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Want:

– Appropriate topology on laws of stochastic processes

– Distance we can actually compute
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b, b̄ : [0, T ]× R → R, σ, σ̄ : [0, T ]× R → [0,∞),

dXt = bt(Xt)dt+ σt(Xt)dBt, X0 = x0,

dX̄t = b̄t(X̄t)dt+ σ̄t(X̄t)dWt, X̄0 = x0.

µ = Law(X), ν = Law(X̄)

Theorem [Backhoff-Veraguas, Källblad, R. ’24]

For “sufficiently nice” coefficients, we can compute an

“appropriate distance” dp, p ≥ 1, by

dp(µ, ν)
p = E

  T

0
|Xt − X̄t|pdt


, with B = W.
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Application

E.g. optimal stopping:

P → v(P) = sup
τ∈T

EP[L(τ,ω)]

Theorem
[Acciaio, Backhoff-Veraguas, Zalashko ’19], [R. Szölgyenyi ’24]

ω → L(t,ω) Lipschitz on (Ω,  · Lp) unif. in t ∈ [0, T ]

⇒
P → v(P) Lipschitz on (Pp(Ω), dp)
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Optimal transport

Probability measures µ, ν ∈ Pp(RN ), p ∈ [1,∞).

Find Wasserstein distance

Wp
p (µ, ν) := inf

X∼µ,Y∼ν
E[|X − Y |p]

Metrises weak topology on Pp(RN )



Example

[Aldous ’81], [Backhoff-Veraguas, Bartl, Beiglböck, Eder ’20]
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Probability measures µ, ν ∈ Pp(RN ), p ∈ [1,∞).

Find adapted Wasserstein distance

AWp
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E


N
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|Tn(X)−Xn|p

”

T (X) = (T1(X1), T2(X1, X2), . . . , TN (X1, . . . , XN ))

and symmetric condition.

Metrises adapted weak topology on Pp(RN )

Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglböck, Bion-Nadal,

Eder, Hellwig, Källblad, Pammer, Pflug, Pichler, Talay, Zalaschko,

...
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Continuous time

Similar definition of Wasserstein distance in continuous time w.r.t.

Lp norm on Ω := C([0, T ],R)
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Continuous time

Similar definition of adapted Wasserstein distance in continuous

time w.r.t. Lp norm on Ω := C([0, T ],R)

µ, ν ∈ P(Ω) ⇝ AWp
p(µ, ν) := inf

π∈Cplbc(µ,ν)
Eπ

 T

0
|ωt − ω̄t|pdt



Cplbc(µ, ν) = {π ∈ Cpl(µ, ν) : π bicausal}

“FX
t independent of FY

T conditional on F Y
t ” and vice versa
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Coupling SDEs

Theorem [Backhoff-Veraguas, Källblad, R. ’24]

Optimising over bicausal couplings π ∈ Cplbc(µ, ν)
⇔

Optimising over correlations between B,W

Product coupling

B,W independent

Synchronous coupling

Choose the same driving

Brownian motion B = W .
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Classical optimal transport on R

Probability measures µ, ν ∈ Pp(R), p ∈ [1,∞).

Wasserstein distance

Wp
p (µ, ν) := inf

X∼µ,Y∼ν
E[|X − Y |p]

is attained by monotone rearrangement

X = F−1
X (U), Y = F−1

Y (U), U uniform



Key result in discrete time
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N
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Knothe–Rosenblatt rearrangement
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Key result in discrete time

µ, ν ∈ P(RN ) ⇝ AWp
p (µ, ν) := inf

π∈Cplbc(µ,ν)
Eπ


N

n=1

|Xn − Yn|p


Knothe–Rosenblatt rearrangement

X1 = F−1
µ1

(U1), Y1 = F−1
ν1 (U1), and for k ∈ {2, . . . , N}

Xk = F−1
µX1,...,Xk−1

(Uk), Yk = F−1
νY1,...,Yk−1

(Uk)

U1, . . . , UN independent uniform

πKR(µ, ν) := Law(X,Y )

Theorem [Rüschendorf ’85]

For µ, ν Markov and stochastically comonotone, the

Knothe–Rosenblatt rearrangement is optimal.
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A monotone numerical scheme

dXt = b(Xt)dt+ σ(Xt)dWt

Monotone Euler–Maruyama scheme

Xh
0 = X0,

Xh
t = Xh

kh + b(Xkh)(t− kh) + σ(Xkh)(W
h
t −W h

kh), t ∈ (kh, (k + 1)h].

W h
t −W h

kh = Wt∧τhk
−Wkh, τhk := inf{t > kh : |Wt−Wkh| > Ah|}

Cf. [Milstein, Repin, Tretyakov ‘02], [Liu, Pagès ‘22], [Jourdain,

Pagès ’23]
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A monotone numerical scheme

dXt = b(Xt)dt+ σ(Xt)dWt

Monotone Euler–Maruyama scheme

Xh
0 = X0,

Xh
t = Xh

kh + b(Xkh)(t− kh) + σ(Xkh)(W
h
t −W h

kh), t ∈ (kh, (k + 1)h].

W h
t −W h

kh = Wt∧τhk
−Wkh, τhk := inf{t > kh : |Wt−Wkh| > Ah|}

Write Xh
k := Xh

kh and µh = Law((Xh
k )k).

Lemma [Backhoff-Veraguas, Källblad, R. ’24]

For b,σ Lipschitz, the monotone Euler–Maruyama scheme is

stochastically increasing.

Hence the Knothe–Rosenblatt rearrangement is optimal for µh, νh.

Moreover, πKR(µ
h, νh) = Law(Xh, X̄h), B = W .
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Main result

Assumptions

— Continuous coefficients with linear growth

— Strong existence and uniqueness
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Synchronous coupling solves general bicausal transport problem



Extensions

— Irregular coefficients [R. Szölgyenyi ’24]

— discontinuous drift with exponential growth

— bounded measurable drift

— Higher dimensions

— counterexamples [Backhoff-Veraguas, Källblad, R. ’24]

— different techniques needed

— More general processes (work in progress...)

— jump-diffusions, McKean–Vlasov equations, ...



Summary

— Study distance between stochastic processes

— Identify optimal bicausal coupling of SDEs

— Exploit properties of numerical approximations of SDEs

References:


