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Aim: Compute a measure of model uncertainty

E.g.

P → v(P) = sup
α∈A

EP[J (ω,α)]

Want:

– Appropriate topology on laws of stochastic processes

– Distance we can actually compute

SDEs:

– Good computational methods available

– Rich class of models, beyond Lipschitz coefficients
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Main result

b, b̄ : [0, T ]× R → R, σ, σ̄ : [0, T ]× R → [0,∞),

dXt = bt(Xt)dt+ σt(Xt)dBt, X0 = x0,

dX̄t = b̄t(X̄t)dt+ σ̄t(X̄t)dWt, X̄0 = x0.

µ = Law(X), ν = Law(X̄)

Theorem [R., Szölgyenyi ’24]

Under “weak assumptions” on the coefficients, we can compute an

“appropriate distance” by

d(µ, ν)p = E
  T

0
|Xt − X̄t|pdt


, with B = W.
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b : R → R, σ : R → [0,∞), X0 = x ∈ R,

dXt = b(Xt)dt+ σ(Xt)dBt. (SDE)

Assumption (A)

b satisfies piecewise regularity conditions and exponential growth

condition,

σ is Lipschitz and non-zero at the discontinuity points of b.

Theorem [R., Szölgyenyi ’24]

Strong existence, pathwise uniqueness, and moment bounds hold

for (SDE) with coefficients satisfying (A). Moreover, for a

transformation-based semi-implicit Euler scheme, we obtain strong

convergence rates.
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Optimal transport

Probability measures µ, ν on RN

Find

Wp
p (µ, ν) := inf

π∈Cpl(µ,ν)
Eπ


N

n=1

|Xn − Yn|p


Cpl(µ, ν) = {π = Law(X,Y ) : X ∼ µ, Y ∼ ν}

Monge (1781)

Kantorovich (1942) ⇝ T random: replace (X,T (X)) with

coupling π = Law(X,Y ), X ∼ µ, Y ∼ ν

Wasserstein distance metrises usual weak topology
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cn continuous, polynomial growth, quasi-monotone

cn(x, y) + cn(x
′, y′)− cn(x, y

′)− cn(x
′, y) ≥ 0, ∀x ≤ x′, y ≤ y′

Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglböck, Bion-Nadal,

Eder, Hellwig, Källblad, Pammer, Pflug, Pichler, Talay, Zalaschko,

...



Example revisited

[Backhoff-Veraguas, Bartl, Beiglböck, Eder ’20], [Aldous ’81]
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Coupling SDEs

Theorem [Backhoff-Veraguas, Källblad, R. ’22]

Optimising over bicausal couplings π ∈ Cplbc(µ, ν)
⇔

Optimising over correlations between B,W

Product coupling

B,W independent

Synchronous coupling

Choose the same driving

Brownian motion B = W .
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Key result in discrete time

µ, ν ∈ P(RN ) ⇝ AWp
p (µ, ν) := inf

π∈Cplbc(µ,ν)
Eπ


N

n=1

|Xn − Yn|p


Knothe–Rosenblatt rearrangement

Yk = TKR
k (X1, . . . , Xk) = F−1

νY1,...,Yk−1
◦ FµX1,...,Xk−1

(Xk),

Theorem [Rüschendorf ’85] [Posch ’23]

For µ, ν stochastically co-monotone, the unique optimiser is the

Knothe–Rosenblatt rearrangement.

This induces the adapted weak topology.
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A monotone numerical scheme

dXt = b(Xt)dt+ σ(Xt)dWt

Monotone Euler–Maruyama scheme

Xh
0 = X0,

Xh
t = Xh

kh + b(Xkh)(t− kh) + σ(Xkh)(W
h
t −W h

kh), t ∈ (kh, (k + 1)h].

W h
t −W h

kh = Wt∧τhk
−Wkh, τhk := inf{t > kh : |Wt−Wkh| > Ah|}

Write Xh
k := Xh

kh and µh = Law((Xh
k )k).

Lemma [Backhoff-Veraguas, Källblad, R. ’22]

For b,σ Lipschitz, the monotone Euler–Maruyama scheme is

stochastically increasing.

Hence the Knothe–Rosenblatt rearrangement is optimal for µh, νh.



Proof of main result

dXt = bt(Xt)dt+ σt(Xt)dBt, X0 = x ⇝ Law(X) = µ

dX̄t = b̄t(X̄t)dt+ σ̄t(X̄t)dWt, X̄0 = x ⇝ Law(X̄) = ν

Theorem [R., Szölgyenyi ’24]

Under “weak assumptions” on the coefficients, we can compute

the adapted Wasserstein distance by

AWp
p (µ, ν) = E

  T

0
|Xt − X̄t|pdt


, with B = W.

1. Discretise SDEs;

2. Solve discrete-time bicausal optimal transport problem;

3. Pass to a limit.
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Transformation-based semi-implicit Euler scheme

Assumption (A)

Drift b : R → R satisfies the following conditions piecewise:

– absolute continuity

– one-sided Lipschitz condition

– two-sided local Lipschitz condition

– exponential growth

ξ1 ξ2 ξm−1 ξm

Diffusion σ : R → [0,∞) satisfies

– global Lipschitz condition

– σ(ξk) ∕= 0, for k ∈ {1, . . . ,m} — no uniform ellipticity



Transformation-based semi-implicit Euler scheme

Under Assumption (A) , the scheme is constructed as follows:

1. Apply the transformation G from [Leobacher, Szölgyenyi ’17]

to (SDE),

Z = G(X)

dZt = b̃(Zt)dt+ σ̃(Zt)dWt

b̃ one-sided Lipschitz, exponential growth, locally Lipschitz, a.c.

σ̃ Lipschitz
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Under Assumption (A) , the scheme is constructed as follows:
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to (SDE),

2. Apply a semi-implicit Euler scheme with truncated Brownian

increments to the transformed SDE,
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Transformation-based semi-implicit Euler scheme

Under Assumption (A) , the scheme is constructed as follows:

1. Apply the transformation G from [Leobacher, Szölgyenyi ’17]

to (SDE),

2. Apply a semi-implicit Euler scheme with truncated Brownian

increments to the transformed SDE,

3. Transform back.

Z = G(X)

dZt = b̃(Zt)dt+ σ̃(Zt)dWt

Zh
(k+1)h = Zh

kh + b̃(Zh
(k+1)h) · h+ σ̃(Zh

kh)(W
h
(k+1)h −W h

kh)

Xh
kh = G−1(Zh

kh)



Transformation-based semi-implicit Euler scheme

Under Assumption (A) , the scheme is constructed as follows:

1. Apply the transformation G from [Leobacher, Szölgyenyi ’17]

to (SDE),

2. Apply a semi-implicit Euler scheme with truncated Brownian

increments to the transformed SDE,

3. Transform back.

Theorem [R., Szölgyenyi ’24]

Let (b,σ) satisfy Assumption (A). Then (SDE) admits a unique

strong solution and, for all p ≥ 1, there exists Cp ≥ 0 such that

E

|XT −Xh

T |p
 1

p ≤





Cph

1
2 , p ∈ [1, 2],

Cph
1

p(p−1) , p ≥ 2.



Ingredients

Optimal Transport SDEs

Numerics
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(C) continuous coefficients, linear growth, pathwise uniqueness.

dXt = bt(Xt)dt+ σt(Xt)dBt, X0 = x ⇝ Law(X) = µ

dX̄t = b̄t(X̄t)dt+ σ̄t(X̄t)dWt, X̄0 = x ⇝ Law(X̄) = ν

Main Theorem [R., Szölgyenyi ’24]

Let (b,σ) and (b̄, σ̄) each satisfy one of assumptions (A), (B), (C).

Then, for p ∈ [1,∞), the adapted Wasserstein distance is given by

AWp
p (µ, ν) = E

  T

0
|Xt − X̄t|pdt


, with B = W

Synchronous coupling solves general bicausal transport problem



Future research directions

• Extension to higher dimensions

— Examples in [Backhoff-Veraguas, Källblad, R. ’22] show that

the synchronous coupling is not always optimal

• Extension to jump-diffusions

• Extension to neural SDEs, McKean–Vlasov SDEs

• Convergence of optimisers

— Use density estimates for SDEs from [Backhoff-Veraguas,

Unterberger ’23]

• Application to uniqueness of mimicking martingales



Summary

• We compute adapted Wasserstein distance between SDEs

with irregular coefficients

• We prove strong convergence rates for a numerical scheme for

SDEs with discontinuous and exponentially growing drift
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